RNA as a Linear Polymer, but a Branched Genome

William M. Gelbart, Ph.D.
Professor
Department Chemistry & Biochemistry
UCLA

Thursday, November 12, 2015
4:00 PM
A2-342 MDCC, Moss Auditorium
Marion Davies Children’s Clinic

ABSTRACT:
We learn in school that the genetic material of life is DNA. But the genome of most viruses is single-stranded (ss) RNA, as opposed to double-stranded (ds) DNA. And, even though ssRNA is strictly a linear polymer -- involving a chain of covalently-linked nucleotides -- it behaves effectively as a highly branched polymer, because of the large extent of self-complementarity (base-pairing between distant nucleotides along the chain). In my talk I discuss how we characterize and quantify the “branchedness” of long RNA molecules, and its role in determining the physical properties of virus-like particles and the infectivity of viruses.